Engineering of Optical and Electrical Properties of Electrodeposited Highly Doped Al:ZnO and In:ZnO for Cost-Effective Photovoltaic Device Technology

Author:

Papadimitriou Dimitra N.

Abstract

Resistivity and transparency of zinc-oxide layers (ZnO) for chalcopyrite photovoltaic technology applications were engineered by activation of the Burstein–Moss (BM) effect at high concentrations of aluminium (Al) and indium (In) dopant. The Al:ZnO and In:ZnO layers were processed by cost-effective, large-area, fast-rate electrochemical deposition techniques from aqueous solution of zinc nitrate (Zn(NO3)2) and dopant trichlorides, at negative electrochemical potential of EC = (−0.8)–(−1.2) V, moderate temperature of 80 °C, and solute dopant concentrations of AlCl3 and InCl3 up to 20 and 15 mM, respectively. Both Al:ZnO and In:ZnO layers were deposited on Mo/glass substrates with ZnO and ZnO/ZnSe buffers (Al:ZnO/ZnO/Mo/glass, In:ZnO/ZnO/ZnSe/Mo/glass), respectively. Based on the band-gap energy broadening of Al:ZnO and In:ZnO originated by the BM effect, maximum carrier concentrations of the order 1020 and 1021 cm−3, respectively, were determined by optical characterization techniques. The (electrical) resistivity values of Al:ZnO calculated from optical measurements were commensurate with the results of electrical measurements (10−4 Ohm·cm). In both cases (Al:ZnO and In:ZnO), calibration of carrier density in dependence of solute dopant concentration (AlCl3 and InCl3) was accomplished. The p–n junctions of Au/In:ZnO/ZnO/ZnSe/CIGS/Mo on glass substrate exhibited current–voltage (I–V) characteristics competing with those of crystalline silicon (c-Si) solar cells.

Funder

Staff-Mobility Programmes of the European Union

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3