The Effect of Concentration of Aluminum on Structural, Optical, and Electrical Properties of Aluminum‐doped ZnO Nanostructures Electrochemically Deposited on Polyimide

Author:

Çetinel Alper1ORCID,Burgaz Sefer Haşim1ORCID

Affiliation:

1. Department of Physics Ege University Bornova, 35030 Izmir Turkiye

Abstract

AbstractAluminum‐doped ZnO (AZO) were successfully prepared on polyimide (PI) film using electrochemical deposition. Field emission scanning electron microscopy (FESEM) analysis revealed that as the aluminum concentration increased, the morphology of AZO nanostructures changed from pellets to nanorods. X‐ray photoelectron spectrometry (XPS) was employed to study the chemical states of undoped and Al‐doped ZnO on a polyimide substrate. The X‐ray diffraction (XRD) patterns of the PI/AZO nanostructures showed a polycrystalline wurtzite structure with a crystallographic orientation along the (002) plane. The XRD analysis also indicated that the average crystallite size decreased from 50.5 nm to 31.0 nm with increasing aluminum concentration (from 0.05 mM to 10 mM). Transmittance analysis revealed that with increasing aluminum concentration, the average optical transmittance in the visible region decreased from 90 % to 75 %. The aluminum concentration has a significant effect on the electrical properties of the samples, as shown by current‐voltage (I–V) and Hall measurements. Among the samples, the AZO/PI film prepared with 5 mM aluminum concentration exhibited the minimum electrical resistivity (4.14×10−2 Ω.cm), the highest carrier density (1.10×1021 cm−3) and the Hall mobility (5.40 cm2 V−1 s−1). We also discuss the possible mechanisms underlying these results compared to undoped ZnO films. This study contributes to the potential applications in flexible electronics and optoelectronics by demonstrating the tunability of AZO nanostructures on a flexible polyimide substrate through controlled aluminum doping.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3