Affiliation:
1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
Abstract
This paper presents a nonsingular terminal sliding mode and active disturbance rejection decoupling control (NTSM-ADRDC) scheme for the three-dimensional (3D) trajectory tracking of autonomous underwater vehicles (AUV). Firstly, the AUV model is decoupled into five independent single input–single output (SISO) channels using ADRDC technology. Secondly, the NTSM-ADRDC controller is designed. The linear extended state observer (LESO) is used to observe the AUV state variables, and estimate the total disturbance of the system. In addition, to improve the system error convergence rate, the combination of exponential reaching rate and NTSM constitutes a nonlinear states error feedback control law for the controller. Finally, the stability of the proposed control law is proved using the Lyapunov theory. The simulation results demonstrate the effectiveness and robustness of the designed NTSM-ADRDC trajectory tracking approach.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Heilongjiang Province
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献