Efficient Robot Skills Learning with Weighted Near-Optimal Experiences Policy Optimization

Author:

Hou Liwei,Wang Hengsheng,Zou Haoran,Wang Qun

Abstract

Autonomous learning of robotic skills seems to be more natural and more practical than engineered skills, analogous to the learning process of human individuals. Policy gradient methods are a type of reinforcement learning technique which have great potential in solving robot skills learning problems. However, policy gradient methods require too many instances of robot online interaction with the environment in order to learn a good policy, which means lower efficiency of the learning process and a higher likelihood of damage to both the robot and the environment. In this paper, we propose a two-phase (imitation phase and practice phase) framework for efficient learning of robot walking skills, in which we pay more attention to the quality of skill learning and sample efficiency at the same time. The training starts with what we call the first stage or the imitation phase of learning, updating the parameters of the policy network in a supervised learning manner. The training set used in the policy network learning is composed of the experienced trajectories output by the iterative linear Gaussian controller. This paper also refers to these trajectories as near-optimal experiences. In the second stage, or the practice phase, the experiences for policy network learning are collected directly from online interactions, and the policy network parameters are updated with model-free reinforcement learning. The experiences from both stages are stored in the weighted replay buffer, and they are arranged in order according to the experience scoring algorithm proposed in this paper. The proposed framework is tested on a biped robot walking task in a MATLAB simulation environment. The results show that the sample efficiency of the proposed framework is much higher than ordinary policy gradient algorithms. The algorithm proposed in this paper achieved the highest cumulative reward, and the robot learned better walking skills autonomously. In addition, the weighted replay buffer method can be made as a general module for other model-free reinforcement learning algorithms. Our framework provides a new way to combine model-based reinforcement learning with model-free reinforcement learning to efficiently update the policy network parameters in the process of robot skills learning.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3