Robotic Grasping of Novel Objects using Vision

Author:

Saxena Ashutosh1,Driemeyer Justin1,Ng Andrew Y.1

Affiliation:

1. Computer Science Department, Stanford University, Stanford, CA 94305, USA,

Abstract

We consider the problem of grasping novel objects, specifically objects that are being seen for the first time through vision. Grasping a previously unknown object, one for which a 3-d model is not available, is a challenging problem. Furthermore, even if given a model, one still has to decide where to grasp the object. We present a learning algorithm that neither requires nor tries to build a 3-d model of the object. Given two (or more) images of an object, our algorithm attempts to identify a few points in each image corresponding to good locations at which to grasp the object. This sparse set of points is then triangulated to obtain a 3-d location at which to attempt a grasp. This is in contrast to standard dense stereo, which tries to triangulate every single point in an image (and often fails to return a good 3-d model). Our algorithm for identifying grasp locations from an image is trained by means of supervised learning, using synthetic images for the training set. We demonstrate this approach on two robotic manipulation platforms. Our algorithm successfully grasps a wide variety of objects, such as plates, tape rolls, jugs, cellphones, keys, screwdrivers, staplers, a thick coil of wire, a strangely shaped power horn and others, none of which were seen in the training set. We also apply our method to the task of unloading items from dishwashers.

Publisher

SAGE Publications

Subject

Applied Mathematics,Artificial Intelligence,Electrical and Electronic Engineering,Mechanical Engineering,Modeling and Simulation,Software

Cited by 449 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3