An Unsupervised Anomaly Detection Based on Self-Organizing Map for the Oil and Gas Sector

Author:

Concetti Lorenzo1ORCID,Mazzuto Giovanni1ORCID,Ciarapica Filippo Emanuele1,Bevilacqua Maurizio1ORCID

Affiliation:

1. Department of Industrial Engineering and Mathematical Science, Università Politecnica delle Marche, 60131 Ancona, Italy

Abstract

Anomaly detection plays a crucial role in preserving industrial plant health. Detecting and identifying anomalies helps prevent any production system from damage and failure. In complex systems, such as oil and gas, many components need to be kept operational. Predicting which parts will break down in a time interval or identifying which ones are working under abnormal conditions can significantly increase their reliability. Moreover, it underlines how the use of artificial intelligence is also emerging in the process industry and not only in manufacturing. In particular, the state-of-the-art analysis reveals a growing interest in the subject and that most identified algorithms are based on neural network approaches in their various forms. In this paper, an approach for fault detection and identification was developed using a Self-Organizing Map algorithm, as the results of the obtained map are intuitive and easy to understand. In order to assign each node in the output map a single class that is unique, the purity of each node is examined. The samples are identified and mapped in a two-dimensional space, clustering all readings into six macro-areas: (i) steady-state area, (ii) water anomaly macro-area, (iii) air-water anomaly area, (iv) tank anomaly area, (v) air anomaly macro-area, (vi) and steady-state transition area. Moreover, through the confusion matrix, it is found that the algorithm achieves an overall accuracy of 90 per cent and can classify and recognize the state of the system. The proposed algorithm was tested on an experimental plant at Università Politecnica delle Marche.

Funder

European Union’s Horizon Europe research and innovation programme

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3