Anomaly Detection in a Smart Industrial Machinery Plant Using IoT and Machine Learning

Author:

Jaramillo-Alcazar Angel1ORCID,Govea Jaime1,Villegas-Ch William1ORCID

Affiliation:

1. Escuela de Ingeniería en Ciberseguridad, Facultad de Ingenierías Ciencias Aplicadas, Universidad de Las Américas, Quito 170125, Ecuador

Abstract

In an increasingly technology-driven world, the security of Internet-of-Things systems has become a top priority. This article presents a study on the implementation of security solutions in an innovative manufacturing plant using IoT and machine learning. The research was based on collecting historical data from telemetry sensors, IoT cameras, and control devices in a smart manufacturing plant. The data provided the basis for training machine learning models, which were used for real-time anomaly detection. After training the machine learning models, we achieved a 13% improvement in the anomaly detection rate and a 3% decrease in the false positive rate. These results significantly impacted plant efficiency and safety, with faster and more effective responses seen to unusual events. The results showed that there was a significant impact on the efficiency and safety of the smart manufacturing plant. Improved anomaly detection enabled faster and more effective responses to unusual events, decreasing critical incidents and improving overall security. Additionally, algorithm optimization and IoT infrastructure improved operational efficiency by reducing unscheduled downtime and increasing resource utilization. This study highlights the effectiveness of machine learning-based security solutions by comparing the results with those of previous research on IoT security and anomaly detection in industrial environments. The adaptability of these solutions makes them applicable in various industrial and commercial environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3