Abstract
The transformation from traditional industry to Industry 4.0 can bring many benefits in various spheres, from efficiency to safety. However, this transition involves adopting technologically advanced machinery with a high level of digitization and communication. The costs and time to replace obsolete machines could be unsustainable for many companies while retrofitting the old machinery. To make them ready to the Industry 4.0 context, they may represent an alternative to the replacement. Even if there are many studies related to retrofitting applied to machinery, there are very few studies related to the literature process industry sector. In this work, we propose a case study of a two-phase mixing plant that needed to be enhanced in the safety and maintainability conditions with reasonable times and costs. In this regard, the Digital Twin techniques and Deep Learning algorithms will be tested to predict and detect future faults, not only already visible and existing malfunctions. This approach strength is that, with limited investments and reasonable times, it allows the transformation of an old plant into a smart plant capable of communicating quickly with operators to increase its safety and maintainability.
Funder
Istituto Nazionale per l'Assicurazione Contro Gli Infortuni sul Lavoro
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献