Abstract
Tool wear and breakage are inevitable due to the severe stress and high temperature in the cutting zone. A highly reliable tool condition monitoring system is necessary to increase productivity and quality, reduce tool costs and equipment downtime. Although many studies have been conducted, most of them focused on single-step process or continuous cutting. In this paper, a high robust milling tool wear monitoring methodology based on 2-D convolutional neural network (CNN) and derived wavelet frames (DWFs) is presented. The frequency band of high signal-to-noise ratio is extracted via derived wavelet frames, and the spectrum is further folded into a 2-D matrix to train 2-D CNN. The feature extraction ability of the 2-D CNN is fully utilized, bypassing the complex and low-portability feature engineering. The full life test of the end mill was carried out with S45C steel work piece and multiple sets of cutting conditions. The recognition accuracy of the proposed methodology reaches 98.5%, and the performance of 1-D CNN as well as the beneficial effects of the DWFs are verified.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Natural Science Foundation of Fujian Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献