Deep learning-based CNC milling tool wear stage estimation with multi-signal analysis

Author:

Karabacak Yunus EmreORCID

Abstract

In this work, the convolutional neural network (CNN), which is a deep learning method in which the features are extracted by an inner process, was performed to detect the wear stages of the milling tool. These stages that define the total lifespan of the tool are known as initial wear (IW), steady-state wear (SSW), and accelerated wear (AW). Short Time Fourier Transform (STFT) was applied to signals, and signal spectrograms were used to train CNN models with different complex architectures. Vibration signals, acoustic emission signals, and motor current signals from The Nasa Ames Milling Dataset were used to obtain the spectrograms. Pre-trained CNNs (GoogleNet, AlexNet, ResNet-50, and EfficientNet-B0) detected the tool wear stage with varying accuracies. It has been seen that the time duration of model training increases as the size of the dataset grows and the network architecture becomes more complex. The recommended method has also been tested on the 2010 PHM Data Challenge Dataset. CNN shows promise for condition monitoring of milling operations and detecting tool wear stage.

Publisher

Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne

Subject

Industrial and Manufacturing Engineering,Safety, Risk, Reliability and Quality

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3