Improvements and Evaluation on Bitter Orange Leaves (Citrus aurantium L.) Solar Drying in Humid Climates

Author:

Jorge de Jesús Chan-GonzálezORCID,Margarita Castillo TéllezORCID,Beatriz Castillo-TéllezORCID,Francisco Román Lezama-ZárragaORCID,Gerardo Alberto Mejía-PérezORCID,Carlos Jesahel Vega-GómezORCID

Abstract

Dried, bitter orange leaves are widely used because of their nutritious and medicinal applications. As a result, many technologies have been used to accomplish its drying process. However, drying needs a long time and high energy demand, especially in humid climates. In this paper, bitter orange leaf drying was carried out using thermal and photovoltaic solar energy (integrated system, IS), eliminating the high humidity inside of the drying chamber to improve this process. A regular solar dryer (RD) was also used to compare the kinetics, mathematical modeling, and colorimetry study (as a quality parameter), evaluating both systems’ performances. The drying leaves’ weights were stabilized after 330 min in the RD and after 240 min in the IS, with a maximum drying rate of 0.021 kg water/kg dry matter∙min, reaching a relative humidity of 7.9%. The Page and Modified Page models were the best fitting to experimental results with an Ra2 value of 0.9980. In addition, the colorimetric study showed a better-preserved color using the IS, with an ∆E of 9.12, while in the RD, the ∆E was 20.66. Thus, this system implementation can reduce agroindustry costs by reducing time and energy with a better-quality and sustainable product, avoiding 53.2 kg CO2 emissions to the environment.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3