Abstract
Live weight monitoring is an important step in Hanwoo (Korean cow) livestock farming. Direct and indirect methods are two available approaches for measuring live weight of cows in husbandry. Recently, thanks to the advances of sensor technology, data processing, and Machine Learning algorithms, the indirect weight measurement has been become more popular. This study was conducted to explore and evaluate the feasibility of machine learning algorithms in estimating the body live weight of Hanwoo cow using ten body measurements as input features. Various supervised Machine Learning algorithms, including Multilayer Perceptron, k-Nearest Neighbor, Light Gradient Boosting Machine, TabNet, and FT-Transformer, are employed to develop the models that estimate the body live weight using body measurement data. Data analysis is exploited to explore the correlation between the body size measurements (the features) and the weights (target values that need to be estimated) of cows. Data analysis results show that ten body measurements have a high correlation with the body live weight. High performance of all applied Machine Learning models was obtained. It can be concluded that estimating the body live weight of Hanwoo cow is feasible by utilizing Machine Learning algorithms. Among all of the tested algorithms, LightGBM regression demonstrates not only the best model in terms of performance, model complexity and development time.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献