Computer Vision-Based Measurement Techniques for Livestock Body Dimension and Weight: A Review

Author:

Ma Weihong1ORCID,Qi Xiangyu12,Sun Yi1,Gao Ronghua1,Ding Luyu1ORCID,Wang Rong1ORCID,Peng Cheng1,Zhang Jun1,Wu Jianwei1,Xu Zhankang1,Li Mingyu1,Zhao Hongyan3,Huang Shudong14,Li Qifeng1

Affiliation:

1. Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

2. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China

3. Otoke Banner Agricultural and Animal Husbandry Technology Extension Center, Ordos 016199, China

4. College of Computer Science, Sichuan University, Chengdu 610065, China

Abstract

Acquiring phenotypic data from livestock constitutes a crucial yet cumbersome phase in the breeding process. Traditionally, obtaining livestock phenotypic data primarily involves manual, on-body measurement methods. This approach not only requires extensive labor but also induces stress on animals, which leads to potential economic losses. Presently, the integration of next-generation Artificial Intelligence (AI), visual processing, intelligent sensing, multimodal fusion processing, and robotic technology is increasingly prevalent in livestock farming. The advantages of these technologies lie in their rapidity and efficiency, coupled with their capability to acquire livestock data in a non-contact manner. Based on this, we provide a comprehensive summary and analysis of the primary advanced technologies employed in the non-contact acquisition of livestock phenotypic data. This review focuses on visual and AI-related techniques, including 3D reconstruction technology, body dimension acquisition techniques, and live animal weight estimation. We introduce the development of livestock 3D reconstruction technology and compare the methods of obtaining 3D point cloud data of livestock through RGB cameras, laser scanning, and 3D cameras. Subsequently, we explore body size calculation methods and compare the advantages and disadvantages of RGB image calculation methods and 3D point cloud body size calculation methods. Furthermore, we also compare and analyze weight estimation methods of linear regression and neural networks. Finally, we discuss the challenges and future trends of non-contact livestock phenotypic data acquisition. Through emerging technologies like next-generation AI and computer vision, the acquisition, analysis, and management of livestock phenotypic data are poised for rapid advancement.

Funder

National Key R&D Program of China

Beijing Academy of Agriculture and Forestry Sciences

Sichuan Science and Technology Program

Beijing Nova Program

Key Special Project “Promoting Mongolia through Technology”

Science and Technology Plan Project of Yunnan Provincial Department of Science and Technology

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3