Our New Artificial Intelligence Infrastructure: Becoming Locked into an Unsustainable Future

Author:

Robbins Scott,van Wynsberghe Aimee

Abstract

Artificial intelligence (AI) is becoming increasingly important for the infrastructures that support many of society’s functions. Transportation, security, energy, education, the workplace, the government have all incorporated AI into their infrastructures for enhancement and/or protection. In this paper, we argue that not only is AI seen as a tool for augmenting existing infrastructures, but AI itself is becoming an infrastructure that many services of today and tomorrow will depend upon. Considering the vast environmental consequences associated with the development and use of AI, of which the world is only starting to learn, the necessity of addressing AI alongside the concept of infrastructure points toward the phenomenon of carbon lock-in. Carbon lock-in refers to society’s constrained ability to reduce carbon emissions technologically, economically, politically, and socially. These constraints are due to the inherent inertia created by entrenched technological, institutional, and behavioral norms. That is, the drive for AI adoption in virtually every sector of society will create dependencies and interdependencies from which it will be hard to escape. The crux of this paper boils down to this: in conceptualizing AI as infrastructure we can recognize the risk of lock-in, not just carbon lock-in but lock-in as it relates to all the physical needs to achieve the infrastructure of AI. This does not exclude the possibility of solutions arising with the rise of these technologies; however, given these points, it is of the utmost importance that we ask inconvenient questions regarding these environmental costs before becoming locked into this new AI infrastructure.

Funder

Alexander von Humboldt Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3