Sustainable AI: AI for sustainability and the sustainability of AI

Author:

van Wynsberghe AimeeORCID

Abstract

AbstractWhile there is a growing effort towards AI for Sustainability (e.g. towards the sustainable development goals) it is time to move beyond that and to address the sustainability of developing and using AI systems. In this paper I propose a definition of Sustainable AI; Sustainable AI is a movement to foster change in the entire lifecycle of AI products (i.e. idea generation, training, re-tuning, implementation, governance) towards greater ecological integrity and social justice. As such, Sustainable AI is focused on more than AI applications; rather, it addresses the whole sociotechnical system of AI. I have suggested here that Sustainable AI is not about how to sustain the development of AI per say but it is about how to develop AI that is compatible with sustaining environmental resources for current and future generations; economic models for societies; and societal values that are fundamental to a given society. I have articulated that the phrase Sustainable AI be understood as having two branches; AI for sustainability and sustainability of AI (e.g. reduction of carbon emissions and computing power). I propose that Sustainable AI take sustainable development at the core of its definition with three accompanying tensions between AI innovation and equitable resource distribution; inter and intra-generational justice; and, between environment, society, and economy. This paper is not meant to engage with each of the three pillars of sustainability (i.e. social, economic, environment), and as such the pillars of sustainable AI. Rather, this paper is meant to inspire the reader, the policy maker, the AI ethicist, the AI developer to connect with the environment—to remember that there are environmental costs to AI. Further, to direct funding towards sustainable methods of AI.

Funder

Alexander von Humboldt-Stiftung

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

Reference18 articles.

1. Agravente M.: MIT Moves toward Greener, More Sustainable Artificial Intelligence. In: Habitat (blog). https://inhabitat.com/mit-moves-toward-greener-more-sustainable-artificial-intelligence/ (2020). Accessed 15 May 2020

2. Angwin, J., Jeff L.: Machine Bias. Text/html. ProPublica. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (2016) Accessed date 23 May 2016.

3. Anthony LFW, Kanding B, Selvan R.: Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models. ArXiv:2007.03051 (2020).

4. Barrett, L.F., Adolphs, R., Marsella, S., Martinez, A.M., Pollak, S.D.: Emotional expressions reconsidered: challenges to inferring emotion from human facial movements. Psychol. Sci. Public. Int. (2019). https://doi.org/10.1177/1529100619832930

5. Basiago, A.D.: Economic, social, and environmentalsustainability in development theory and urban plan-ning practice: the environmentalist. Klauwer Academic Publishers, Boston (1999)

Cited by 280 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3