Overexpression of A Biotic Stress-Inducible Pvgstu Gene Activates Early Protective Responses in Tobacco under Combined Heat and Drought

Author:

Stavridou EvangeliaORCID,Voulgari Georgia,Michailidis MichailORCID,Kostas StefanosORCID,Chronopoulou Evangelia G.,Labrou Nikolaos E.ORCID,Madesis PanagiotisORCID,Nianiou-Obeidat Irini

Abstract

Drought and heat stresses are major factors limiting crop growth and productivity, and their effect is more devastating when occurring concurrently. Plant glutathione transferases (GSTs) are differentially expressed in response to different stimuli, conferring tolerance to a wide range of abiotic stresses. GSTs from drought-tolerant Phaseolus vulgaris var. “Plake Megalosperma Prespon” is expected to play an important role in the response mechanisms to combined and single heat and drought stresses. Herein, we examined wild-type N. tabacum plants (cv. Basmas Xanthi) and T1 transgenic lines overexpressing the stress-induced Pvgstu3–3 and Pvgstu2–2 genes. The overexpression of Pvgstu3–3 contributed to potential thermotolerance and greater plant performance under combined stress. Significant alterations in the primary metabolism were observed in the transgenic plants between combined stress and stress-free conditions. Stress-responsive differentially expressed genes (DEGs) and transcription factors (TFs) related to photosynthesis, signal transduction, starch and sucrose metabolism, osmotic adjustment and thermotolerance, were identified under combined stress. In contrast, induction of certain DEGs and TF families under stress-free conditions indicated that transgenic plants were in a primed state. The overexpression of the Pvgstu3–3 is playing a leading role in the production of signaling molecules, induction of specific metabolites and activation of the protective mechanisms for enhanced protection against combined abiotic stresses in tobacco.

Funder

General Secretariat for Research and Innovation, Greece

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3