The Combined Effect of Drought Stress and Heat Shock on Gene Expression in Tobacco

Author:

Rizhsky Ludmila1,Liang Hongjian2,Mittler Ron2

Affiliation:

1. Department of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel (L.R.); and

2. Department of Botany, Plant Sciences Institute, Iowa State University, Room 353 Bessey Hall, Ames, Iowa 50011 (H.L., R.M.)

Abstract

Abstract In nature, plants encounter a combination of environmental conditions that may include stresses such as drought or heat shock. Although drought and heat shock have been extensively studied, little is known about how their combination affect plants. We used cDNA arrays, coupled with physiological measurements, to study the effect of drought and heat shock on tobacco (Nicotiana tabacum) plants. A combination of drought and heat shock resulted in the closure of stomata, suppression of photosynthesis, enhancement of respiration, and increased leaf temperature. Some transcripts induced during drought, e.g. those encoding dehydrin, catalase, and glycolate oxidase, and some transcripts induced during heat shock, e.g. thioredoxin peroxidase, and ascorbate peroxidase, were suppressed during a combination of drought and heat shock. In contrast, the expression of other transcripts, including alternative oxidase, glutathione peroxidase, phenylalanine ammonia lyase, pathogenesis-related proteins, a WRKY transcription factor, and an ethylene response transcriptional co-activator, was specifically induced during a combination of drought and heat shock. Photosynthetic genes were suppressed, whereas transcripts encoding some glycolysis and pentose phosphate pathway enzymes were induced, suggesting the utilization of sugars through these pathways during stress. Our results demonstrate that the response of plants to a combination of drought and heat shock, similar to the conditions in many natural environments, is different from the response of plants to each of these stresses applied individually, as typically tested in the laboratory. This response was also different from the response of plants to other stresses such as cold, salt, or pathogen attack. Therefore, improving stress tolerance of plants and crops may require a reevaluation, taking into account the effect of multiple stresses on plant metabolism and defense.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 847 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3