Overexpression of Maize Glutathione S-Transferase ZmGST26 Decreases Drought Resistance of Arabidopsis

Author:

Jiang Yushi,Zhang Yuzhe,Duan Ruijie,Fan Jiayi,Jiao PengORCID,Sun Hongji,Guan ShuyanORCID,Liu Siyan

Abstract

Drought stress critically endangers the growth and development of crops. Glutathione S-transferase plays a vital role in response to abiotic stress. However, there are few studies on the role of glutathione S-transferase in maize drought stress. In this study, the significantly downregulated expression of ZmGST26 in roots under drought stress was analyzed by qRT-PCR. Promoter analyses showed that there were several cis-acting elements related to drought stress and that were involved in oxidative response in the promoter region of ZmGST26. Subcellular localization results showed that ZmGST26 was localized in the nucleus. The transgenic lines of the Arabidopsis over-expressing ZmGST26 were more sensitive to drought stress and ABA in seed germination and inhibited ABA-mediated stomatal closure. Under drought stress, phenotypic analyses showed that the germination rate, root length and survival rate of ZmGST26 overexpressing lines were significantly lower than those of wild-type lines. The determination of physiological and biochemical indexes showed that the water loss rate, malondialdehyde, O2− and H2O2 of the overexpression lines significantly increased compared with wild-type Arabidopsis, but the antioxidant enzyme activities (CAT, SOD and POD), and proline and chlorophyll contents were significantly reduced. Subsequently, the qRT-PCR analysis of drought stress-related gene expression showed that, under drought stress conditions, the expression levels of DREB2A, RD29A, RD29B and PP2CA genes in ZmGST26 overexpression lines were significantly lower than those in wild-type Arabidopsis. In summary, ZmGST26 reduced the drought resistance of plants by aggravating the accumulation of reactive oxygen species in Arabidopsis.

Funder

Science and Technology Research Project of Jilin Provincial Department of Education

Science and Technology Development Plan Project of Jilin Province

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3