Coronatine-Induced Maize Defense against Gibberella Stalk Rot by Activating Antioxidants and Phytohormone Signaling

Author:

Liu Mei12,Sui Yiping1,Yu Chunxin3,Wang Xuncheng2,Zhang Wei2,Wang Baomin1,Yan Jiye2,Duan Liusheng1

Affiliation:

1. Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy, China Agricultural University, Beijing 100193, China

2. Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

3. Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China

Abstract

One of the most destructive diseases, Gibberella stalk rot (GSR), caused by Fusarium graminearum, reduces maize yields significantly. An induced resistance response is a potent and cost-effective plant defense against pathogen attack. The functional counterpart of JAs, coronatine (COR), has attracted a lot of interest recently due to its ability to control plant growth and stimulate secondary metabolism. Although several studies have focused on COR as a plant immune elicitor to improve plant resistance to pathogens, the effectiveness and underlying mechanisms of the suppressive ability against COR to F. graminearum in maize have been limited. We investigated the potential physiological and molecular mechanisms of COR in modulating maize resistance to F. graminearum. COR treatment strongly enhanced disease resistance and promoted stomatal closure with H2O2 accumulation, and 10 μg/mL was confirmed as the best concentration. COR treatment increased defense-related enzyme activity and decreased the malondialdehyde content with enhanced antioxidant enzyme activity. To identify candidate resistance genes and gain insight into the molecular mechanism of GSR resistance associated with COR, we integrated transcriptomic and metabolomic data to systemically explore the defense mechanisms of COR, and multiple hub genes were pinpointed using weighted gene correlation network analysis (WGCNA). We discovered 6 significant modules containing 10 candidate genes: WRKY transcription factor (LOC100279570), calcium-binding protein (LOC100382070), NBR1-like protein (LOC100275089), amino acid permease (LOC100382244), glutathione S-transferase (LOC541830), HXXXD-type acyl-transferase (LOC100191608), prolin-rich extensin-like receptor protein kinase (LOC100501564), AP2-like ethylene-responsive transcription factor (LOC100384380), basic leucine zipper (LOC100275351), and glycosyltransferase (LOC606486), which are highly correlated with the jasmonic acid–ethylene signaling pathway and antioxidants. In addition, a core set of metabolites, including alpha-linolenic acid metabolism and flavonoids biosynthesis linked to the hub genes, were identified. Taken together, our research revealed differentially expressed key genes and metabolites, as well as co-expression networks, associated with COR treatment of maize stems after F. graminearum infection. In addition, COR-treated maize had higher JA (JA-Ile and Me-JA) levels. We postulated that COR plays a positive role in maize resistance to F. graminearum by regulating antioxidant levels and the JA signaling pathway, and the flavonoid biosynthesis pathway is also involved in the resistance response against GSR.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference76 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3