Haplotypes of ATP-Binding Cassette CaABCC6 in Chickpea from Kazakhstan Are Associated with Salinity Tolerance and Leaf Necrosis via Oxidative Stress

Author:

Khassanova Gulmira12,Jatayev Satyvaldy1,Gabdola Ademi1ORCID,Kuzbakova Marzhan1ORCID,Zailasheva Aray1,Kylyshbayeva Gulnar3,Schramm Carly4,Schleyer Kathryn4ORCID,Philp-Dutton Lauren4,Sweetman Crystal4ORCID,Anderson Peter4,Jenkins Colin L. D.4,Soole Kathleen L.4ORCID,Shavrukov Yuri4ORCID

Affiliation:

1. Faculty of Agronomy, S.Seifullin Kazakh Agrotechnical Research University, Astana 010000, Kazakhstan

2. A.I. Barayev Research and Production Centre of Grain Farming, Shortandy 021601, Kazakhstan

3. Faculty of Natural Sciences, Central Asian Innovation University, Shymkent 160000, Kazakhstan

4. College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, SA 5042, Australia

Abstract

Salinity tolerance was studied in chickpea accessions from a germplasm collection and in cultivars from Kazakhstan. After NaCl treatment, significant differences were found between genotypes, which could be arranged into three groups. Those that performed poorest were found in group 1, comprising five ICC accessions with the lowest chlorophyll content, the highest leaf necrosis (LN), Na+ accumulation, malondialdehyde (MDA) content, and a low glutathione ratio GSH/GSSG. Two cultivars, Privo-1 and Tassay, representing group 2, were moderate in these traits, while the best performance was for group 3, containing two other cultivars, Krasnokutsky-123 and Looch, which were found to have mostly green plants and an exact opposite pattern of traits. Marker–trait association (MTA) between 6K DArT markers and four traits (LN, Na+, MDA, and GSH/GSSG) revealed the presence of four possible candidate genes in the chickpea genome that may be associated with the three groups. One gene, ATP-binding cassette, CaABCC6, was selected, and three haplotypes, A, D1, and D2, were identified in plants from the three groups. Two of the most salt-tolerant cultivars from group 3 were found to have haplotype D2 with a novel identified SNP. RT-qPCR analysis confirmed that this gene was strongly expressed after NaCl treatment in the parental- and breeding-line plants of haplotype D2. Mass spectrometry of seed proteins showed a higher accumulation of glutathione reductase and S-transferase, but not peroxidase, in the D2 haplotype. In conclusion, the CaABCC6 gene was hypothesized to be associated with a better response to oxidative stress via glutathione metabolism, while other candidate genes are likely involved in the control of chlorophyll content and Na+ accumulation.

Funder

Science Committee of the Ministry of Science and Higher Education, Republic of Kazakhstan

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3