LiDAR/RISS/GNSS Dynamic Integration for Land Vehicle Robust Positioning in Challenging GNSS Environments

Author:

Aboutaleb Ahmed,El-Wakeel Amr S.ORCID,Elghamrawy HaidyORCID,Noureldin AboelmagdORCID

Abstract

The autonomous vehicles (AV) industry has a growing demand for reliable, continuous, and accurate positioning information to ensure safe traffic and for other various applications. Global navigation satellite system (GNSS) receivers have been widely used for this purpose. However, GNSS positioning accuracy deteriorates drastically in challenging environments such as urban environments and downtown cores. Therefore, inertial sensors are widely deployed inside the land vehicle for various purposes, including the integration with GNSS receivers to provide positioning information that can bridge potential GNSS failures. However, in dense urban areas and downtown cores where GNSS receivers may incur prolonged outages, the integrated positioning solution may become prone to severe drift resulting in substantial position errors. Therefore, it is becoming necessary to include other sensors and systems that can be available in future land vehicles to be integrated with both the GNSS receivers and inertial sensors to enhance the positioning performance in such challenging environments. This work aims to design and examine the performance of a multi-sensor system that fuses the GNSS receiver data with not only the three-dimensional reduced inertial sensor system (3D-RISS), but also with the three-dimensional point cloud of onboard light detection and ranging (LiDAR) system. In this paper, a comprehensive LiDAR processing and odometry method is developed to provide a continuous and reliable positioning solution. In addition, a multi-sensor Extended Kalman filtering (EKF)-based fusion is developed to integrate the LiDAR positioning information with both GNSS and 3D-RISS and utilize the LiDAR updates to limit the drift in the positioning solution, even in challenging or ultimately denied GNSS environment. The performance of the proposed positioning solution is examined using several road test trajectories in both Kingston and Toronto downtown areas involving different vehicle dynamics and driving scenarios. The proposed solution provided a performance improvement over the standalone inertial solution by 64%. Over a GNSS outage of 10 min and 2 km distance traveled, our solution achieved position errors less than 2% of the distance travelled.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3