Intelligent Environment-Adaptive GNSS/INS Integrated Positioning with Factor Graph Optimization

Author:

Li Zhengdao1ORCID,Lee Pin-Hsun2ORCID,Hung Tsz Hin Marcus1,Zhang Guohao1ORCID,Hsu Li-Ta1ORCID

Affiliation:

1. Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China

2. Department of Electrical and Computer Engineering, McGill University, Montreal, QC H3A 0G4, Canada

Abstract

Global navigation satellite systems (GNSSs) applied to intelligent transport systems in urban areas suffer from multipath and non-line-of-sight (NLOS) effects due to the signal reflections from high-rise buildings, which seriously degrade the accuracy and reliability of vehicles in real-time applications. Accordingly, the integration between GNSS and inertial navigation systems (INSs) could be utilized to improve positioning performance. However, the fixed GNSS solution uncertainty of the conventional integration method cannot determine the fluctuating GNSS reliability in fast-changing urban environments. This weakness becomes solvable using a deep learning model for sensing the ambient environment intelligently, and it can be further mitigated using factor graph optimization (FGO), which is capable of generating robust solutions based on historical data. This paper mainly develops the adaptive GNSS/INS loosely coupled system on FGO, along with the fixed-gain Kalman filter (KF) and adaptive KF (AKF) being taken as comparisons. The adaptation is aided by a convolutional neural network (CNN), and the feasibility is verified using data from different grades of receivers. Compared with the integration using fixed-gain KF, the proposed adaptive FGO (AFGO) maintains the 100% positioning availability and reduces the overall 2D positioning error by up to 70% in the aspects of both root mean square error (RMSE) and standard deviation (STD).

Funder

University Grants Committee of Hong Kong

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3