Global Navigation Satellite System/Inertial Measurement Unit/Camera/HD Map Integrated Localization for Autonomous Vehicles in Challenging Urban Tunnel Scenarios

Author:

Tao Lu1ORCID,Zhang Pan2ORCID,Gao Kefu2,Liu Jingnan2

Affiliation:

1. The Institutes of Innovation for Future Society, Nagoya University, Nagoya 464-8601, Japan

2. The GNSS Research Center, Wuhan University, Wuhan 430079, China

Abstract

Lane-level localization is critical for autonomous vehicles (AVs). However, complex urban scenarios, particularly tunnels, pose significant challenges to AVs’ localization systems. In this paper, we propose a fusion localization method that integrates multiple mass-production sensors, including Global Navigation Satellite Systems (GNSSs), Inertial Measurement Units (IMUs), cameras, and high-definition (HD) maps. Firstly, we use a novel electronic horizon module to assess GNSS integrity and concurrently load the HD map data surrounding the AVs. This map data are then transformed into a visual space to match the corresponding lane lines captured by the on-board camera using an improved BiSeNet. Consequently, the matched HD map data are used to correct our localization algorithm, which is driven by an extended Kalman filter that integrates multiple sources of information, encompassing a GNSS, IMU, speedometer, camera, and HD maps. Our system is designed with redundancy to handle challenging city tunnel scenarios. To evaluate the proposed system, real-world experiments were conducted on a 36-kilometer city route that includes nine consecutive tunnels, totaling near 13 km and accounting for 35% of the entire route. The experimental results reveal that 99% of lateral localization errors are less than 0.29 m, and 90% of longitudinal localization errors are less than 3.25 m, ensuring reliable lane-level localization for AVs in challenging urban tunnel scenarios.

Funder

International High-Level Forum on Navigation and Location-based Services in Intelligent Era

Research on Key Technology of High Precision Positioning

The development strategy of “Beidou + Intelligent Connected Vehicle” integrated with innovative new transportation infrastructure

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3