Research on Unmanned Vehicle Path Planning Based on the Fusion of an Improved Rapidly Exploring Random Tree Algorithm and an Improved Dynamic Window Approach Algorithm

Author:

Wang Shuang1,Li Gang1ORCID,Liu Boju1

Affiliation:

1. School of Automobile and Traffic Engineering, Liaoning University of Technology, Jinzhou 121001, China

Abstract

Aiming at the problem that the traditional rapidly exploring random tree (RRT) algorithm only considers the global path of unmanned vehicles in a static environment, which has the limitation of not being able to avoid unknown dynamic obstacles in real time, and that the traditional dynamic window approach (DWA) algorithm is prone to fall into a local optimum during local path planning, this paper proposes a path planning method for unmanned vehicles that integrates improved RRT and DWA algorithms. The RRT algorithm is improved by introducing strategies such as target-biased random sampling, adaptive step size, and adaptive radius node screening, which enhance the efficiency and safety of path planning. The global path key points generated by the improved RRT algorithm are used as the subtarget points of the DWA algorithm, and the DWA algorithm is optimized through the design of an adaptive evaluation function weighting method based on real-time obstacle distances to achieve more reasonable local path planning. Through simulation experiments, the fusion algorithm shows promising results in a variety of typical static and dynamic mixed driving scenarios, can effectively plan a path that meets the driving requirements of an unmanned vehicle, avoids unknown dynamic obstacles, and shows higher path optimization efficiency and driving stability in complex environments, which provides strong support for an unmanned vehicle’s path planning in complex environments.

Funder

China Liaoning Provincial Department of Education

Liaoning Higher Education Institutions’ Foreign (Overseas) Training Program

China Liaoning Provincial Natural Fund Grant Program Project

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Path Planning Algorithms for Smart Parking: Review and Prospects;World Electric Vehicle Journal;2024-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3