Improved RRT* Algorithm for Disinfecting Robot Path Planning

Author:

Wang Haotian1,Zhou Xiaolong1ORCID,Li Jianyong1,Yang Zhilun1,Cao Linlin1ORCID

Affiliation:

1. Mechanical Engineering College, Beihua University, Jilin 132021, China

Abstract

In this paper, an improved APF-GFARRT* (artificial potential field-guided fuzzy adaptive rapidly exploring random trees) algorithm based on APF (artificial potential field) guided sampling and fuzzy adaptive expansion is proposed to solve the problems of weak orientation and low search success rate when randomly expanding nodes using the RRT (rapidly exploring random trees) algorithm for disinfecting robots in the dense environment of disinfection operation. Considering the inherent randomness of tree growth in the RRT* algorithm, a combination of APF with RRT* is introduced to enhance the purposefulness of the sampling process. In addition, in the context of RRT* facing dense and restricted environments such as narrow passages, adaptive step-size adjustment is implemented using fuzzy control. It accelerates the algorithm’s convergence and improves search efficiency in a specific area. The proposed algorithm is validated and analyzed in a specialized environment designed in MATLAB, and comparisons are made with existing path planning algorithms, including RRT, RRT*, and APF-RRT*. Experimental results show the excellent exploration speed of the improved algorithm, reducing the average initial path search time by about 46.52% compared to the other three algorithms. In addition, the improved algorithm exhibits faster convergence, significantly reducing the average iteration count and the average final path cost by about 10.01%. The algorithm’s enhanced adaptability in unique environments is particularly noteworthy, increasing the chances of successfully finding paths and generating more rational and smoother paths than other algorithms. Experimental results validate the proposed algorithm as a practical and feasible solution for similar problems.

Funder

Jilin Science and Technology Development Plan Project

Science and Technology Research Project of Jilin Provincial Department of Education

Graduate Innovation Project of Beihua University

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3