Enhanced Robot Motion Block of A-Star Algorithm for Robotic Path Planning

Author:

Kabir Raihan1ORCID,Watanobe Yutaka1,Islam Md Rashedul2ORCID,Naruse Keitaro1ORCID

Affiliation:

1. Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580, Japan

2. Division of Computer Vision and AI, Department of R&D, Chowagiken Corp., Sapporo 001-0021, Japan

Abstract

An optimized robot path-planning algorithm is required for various aspects of robot movements in applications. The efficacy of the robot path-planning model is vulnerable to the number of search nodes, path cost, and time complexity. The conventional A-star (A*) algorithm outperforms other grid-based algorithms because of its heuristic approach. However, the performance of the conventional A* algorithm is suboptimal for the time, space, and number of search nodes, depending on the robot motion block (RMB). To address these challenges, this paper proposes an optimal RMB with an adaptive cost function to improve performance. The proposed adaptive cost function keeps track of the goal node and adaptively calculates the movement costs for quickly arriving at the goal node. Incorporating the adaptive cost function with a selected optimal RMB significantly reduces the searches of less impactful and redundant nodes, which improves the performance of the A* algorithm in terms of the number of search nodes and time complexity. To validate the performance and robustness of the proposed model, an extensive experiment was conducted. In the experiment, an open-source dataset featuring various types of grid maps was customized to incorporate the multiple map sizes and sets of source-to-destination nodes. According to the experiments, the proposed method demonstrated a remarkable improvement of 93.98% in the number of search nodes and 98.94% in time complexity compared to the conventional A* algorithm. The proposed model outperforms other state-of-the-art algorithms by keeping the path cost largely comparable. Additionally, an ROS experiment using a robot and lidar sensor data shows the improvement of the proposed method in a simulated laboratory environment.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3