Design and Motion Simulation of an Underwater Glider in the Vertical Plane

Author:

Huang Jiafeng,Choi Hyeung-SikORCID,Jung Dong-Wook,Lee Ji-Hyeong,Kim Myung-Jun,Choo Ki-Beom,Cho Hyun-Joon,Jin Han-SolORCID

Abstract

Net buoyancy, as the main power source for the motion of an underwater glider, is affected by the pump or bladder that the glider adopts to change its buoyancy force in water. In this study, a new underwater glider that can dive to a depth of 400 m at a cruising speed of 2 knots, which is faster than conventional underwater gliders and is less affected by sea currents, is investigated. The UG resisting 400 m pressure on the buoyancy engine and achieving 2 knots’ speed was designed and constructed. For this UG, its steady-state attitude was studied according to the variance of the buoyancy center and the center of gravity with the buoyancy engine influenced by the displacement of the movable mass block. In motion simulation of the UG, the attitude of the UG under different displacement conditions was simulated in Simulink according to the displacements of the piston and the movable mass block. To validate the simulation performance, a UG was constructed and experiments were conducted. The simulation and experimental results were compared to show the reliability of the simulation results under limited conditions.

Funder

Agency for Defense Development

Unmanned Vehicles Core Technology Research and Development Program through the National Research Foundation of Kore

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3