Study of Underwater and Wave Gliders on the Basis of Simplified Mathematical Models

Author:

Rozhdestvensky Kirill

Abstract

Both underwater and wave gliders are known as autonomous unmanned energy-saving vehicles which have recently found applications for monitoring the world ocean. The paper under consideration discusses simplified mathematical models of these platforms enabling the straightforward parametric investigation into relationships between their parameters and performance. In its first part the paper discusses equations describing the motion of an underwater glider (UG) in a vertical plane as a basis for derivations relating geometric, kinematic and hydrodynamic characteristics of UG and its lifting system with relative differential buoyancy and pitch angle. Obtained therewith are formulae for the estimation of the UG glide path speed, lift-to-drag ratio, range of navigation and endurance. The approach is exemplified for typical cases of the UG conceived as winged bodies of revolution and flying wings. The calculated results feature dependencies of the UG speed on its configuration and volume as well as on the angle of attack for different magnitudes of relative buoyancy. Also considered is an optimal mode of operation, based on the maximization of the lift-to-drag ratio. The second part of the paper is dedicated to the estimation of the thrust and speed of a wave glider (WG), comprising a surface module (float) and underwater module represented by a wing, with the use of a simplified mathematical modeling intended to clarify the influence of the parameters upon the performance of the WG. The derivations led to an equation of forced oscillations of the vehicle accounting for the interaction of the upper and lower modules, connected by a rigid umbilical. The exciting impact of progressive waves of a given length and amplitude is found through the calculation of the variation of a buoyancy force in accordance with the Froude–Krylov hypothesis. The derivatives of time-varying lift with respect to kinematic parameters, entering the equation of vertical motion of the WG, as well as coefficients of instantaneous and time-averaged thrust force, are found by resorting to the oscillating hydrofoil theory. The derivation of the available thrust and the approximate calculation of the drag of the vehicle with account of wave and viscous components enable the evaluation of the speed of the WG for the prescribed geometry of the craft and wave motion parameters.

Funder

Ministry of Science and HIgher Education of the RF as part of World-class Research Center program: Advanced Introduction Digital Technologies

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. SLOCUM: A long Endurance Ocean Profiler Powered by Thermocline Driven Engine;Simonetti;Sea Technol.,1998

2. The autonomous underwater glider "Spray"

3. Autonomous buoyancy driven underwater gliders;Griffiths,2002

4. Underwater Gliders for Ocean Research

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3