Study on Position and Shape Effect of the Wings on Motion of Underwater Gliders

Author:

Huang Jiafeng,Choi Hyeung-SikORCID,Vu Mai TheORCID,Jung Dong-Wook,Choo Ki-BeomORCID,Cho Hyun-Joon,Nam Anh Phan Huy,Zhang Ruochen,Park Jung-Hyeun,Kim Joon-Young,Tran Huy Ngoc

Abstract

A typical structure of an underwater glider (UG) includes a pair of fixed wings, and the hydrodynamic force driving the glider forward as descending or ascending in the water is generated primarily by the fixed wings. In this paper, a simplified glider motion model was established to analyze the dynamics in an easier way, and whose simulation results do not differ from the original one. Also, in the paper, the effects of the wing position and wing shape on the UG to the motion were studied. Since no direct analytic approach cannot be performed, the case study of the effects of six different wing positions and three wing shapes on gliding performances which are gliding speed, gliding angle and gliding path were performed through computer simulation. The simulation results revealed that when the fixed wing is located far from the buoyancy center to the tail end, more traveling range is achieved with less energy. Also, effect of the shape difference of the wings were analyzed. Shape changes did not show much difference on the travelling performance of the UG. In addition to these, the transient mode of the UG was studied. To control this, the PID controller for the position of the mass shifter and piston were applied. By application of the PID controller to the linearized dynamics equations, it was shown that the transient behavior of the UG was quickly and steadily controlled.

Funder

Agency for Defense Development

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3