Unsupervised Fault Detection and Prediction of Remaining Useful Life for Online Prognostic Health Management of Mechanical Systems

Author:

Calabrese Francesca,Regattieri AlbertoORCID,Botti LuciaORCID,Mora Cristina,Galizia Francesco GabrieleORCID

Abstract

Predictive maintenance allows industries to keep their production systems available as much as possible. Reducing unforeseen shutdowns to a level that is close to zero has numerous advantages, including production cost savings, a high quality level of both products and processes, and a high safety level. Studies in this field have focused on a novel approach, prognostic health management (PHM), which relies on condition monitoring (CM) for predicting the remaining useful life (RUL) of a system. However, several issues remain in its application to real industrial contexts, e.g., the difficulties in conducting tests simulating each fault condition, the dynamic nature of industrial environments, and the need to handle large amounts of data collected from machinery. In this paper, a data-driven methodology for PHM implementation is proposed, which has the following characteristics: it is unsupervised, i.e., it does not require any prior knowledge regarding fault behaviors and it does not rely on pre-trained classification models, i.e., it can be applied “from scratch”; it can be applied online due to its low computational effort, which makes it suitable for edge computing; and, it includes all of the steps that are involved in a prognostic program, i.e., feature extraction, health indicator (HI) construction, health stage (HS) division, degradation modelling, and RUL prediction. Finally, the proposed methodology is applied in this study to a rotating component. The study results, in terms of the ability of the proposed approach to make a timely prediction of component fault conditions, are promising.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference34 articles.

1. A Framework for Prognostics and Health Management Applications toward Smart Manufacturing Systems

2. Remaining useful life prediction of rolling element bearings based on health state assessment

3. Introduction and Background;Lei,2017

4. PHM-based maintenance in complex systems: Reference framework, competitive approaches, experimental evidences and future challenges;Calabrese;J. Int. Manuf.

5. Machine learning for multi-criteria inventory classification applied to intermittent demand

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3