Q residual non-parametric Distribution on Fault Detection Approach Using Unsupervised LSTM-KDE

Author:

Mohd Sobran Nur Maisarah,Ismail Zool Hilmi

Abstract

It is well known among practitioner, majority collected data from industrial process plant are unlabeled. The collected historical data if utilize, able to provide vital information of process plant condition. Learning from unlabeled dataset, this study proposed Unsupervised LSTM-KDE approach as a measure to predict fault in industrial process plant. The residual based fault detection approach framework is utilized with long short-term memory (LSTM) as the main pattern learner for nonlinear and multimode condition that usually appear in process plant. Furthermore, kernel density approach (KDE) is used to determine the threshold value in non-parametric condition of unlabeled data. The LSTM-KDE approach later is evaluated with numerical data as well as Tennessee Eastman process plant dataset. The performance also was compared to Principal Component Analysis (PCA), Local outlier factor (LOF) and Auto-associative Kernel Regression (AAKR) to further examine the LSTM-KDE performance. The experimental results indicate that the LSTM-KDE fault detection approach has better learning performance and accuracy compared to other approaches

Publisher

PHM Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3