A New Ship Detection Algorithm in Optical Remote Sensing Images Based on Improved R3Det

Author:

Li JianfengORCID,Li Zongfeng,Chen MingxuORCID,Wang Yongling,Luo QinghuaORCID

Abstract

The task of ship target detection based on remote sensing images has attracted more and more attention because of its important value in civil and military fields. To solve the problem of low accuracy in ship target detection in optical remote sensing ship images due to complex scenes and large-target-scale differences, an improved R3Det algorithm is proposed in this paper. On the basis of R3Det, a feature pyramid network (FPN) structure is replaced by a search architecture-based feature pyramid network (NAS FPN) so that the network can adaptively learn and select the feature combination update and enrich the multiscale feature information. After the feature extraction network, a shallow feature is added to the context information enhancement (COT) module to supplement the small target semantic information. An efficient channel attention (ECA) module is added to make the network gather in the target area. The improved algorithm is applied to the ship data in the remote sensing image data set FAIR1M. The effectiveness of the improved model in a complex environment and for small target detection is verified through comparison experiments with R3Det and other models.

Funder

Major Scientific and Technological Innovation Project of Shandong Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Multi-Stage Feature Enhancement Pyramid Network for Detecting Objects in Optical Remote Sensing Images

2. Research on Ship Detection and Identification Algorithm in High-resolution Remote Sensing Images;Yi;Ph.D. Thesis,2017

3. Research on Convolutional Neural Network Based Object Detection for Remote Sensing Image;Liu;Ph.D. Thesis,2017

4. A Novel Hierarchical Method of Ship Detection from Spaceborne Optical Image Based on Shape and Texture Features

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3