An Efficient Detector with Auxiliary Network for Remote Sensing Object Detection

Author:

Xu Danqing1,Wu Yiquan1

Affiliation:

1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Over the past few decades, advances in satellite and aerial imaging technology have made it possible to acquire high-quality remote sensing images. As one of the most popular research directions of computer vision, remote sensing object detection is widely researched due to the wide application in military and civil fields. The algorithms based on convolutional neural network have made great achievements in the field of object detection. However, plenty of small and densely distributed remote sensing objects against complex background pose some challenges to object detection. In this work, an efficient anchor-free based remote sensing object detector based on YOLO (You Only Look Once) is constructed. Firstly, the backbone network is simplified for the high efficiency of detection. In order to extract the features of densely distributed objects effectively, the detection scales are adjusted based on the backbone network. Secondly, aiming at the shortcomings of CBAM, the improved CJAM (Coordinate Joint Attention Mechanism) is proposed to deal with object detection under complex background. In addition, feature enhancement modules DPFE (Dual Path Feature Enhancement) and IRFE (Inception-ResNet-Feature Enhancement) as well as PRes2Net (Parallel Res2Net) are proposed. We combine CJAM with the above modules to create DC-CSP_n, CSP-CJAM-IRFE, and CJAM-PRes2Net for better feature extraction. Thirdly, a lightweight auxiliary network is constructed to integrate the low-level and intermediate information extracted from remote sensing images into the high-level semantic information of the backbone network. The auxiliary network allows the detector to locate the target efficiently. Fourthly, Swin Transformer is introduced into the ‘Neck’ part of the network so that the network can effectively grasp the global information. The mAP on DOTA1.5 and VEDAI datasets, which both contain a large number of small objects, reached 77.07% and 63.83%, respectively. Compared with advanced algorithms such as YOLO V4, YOLO V5s, YOLO V5l, and YOLO V7, our approach achieves the highest mAP.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3