A Recognition Model Incorporating Geometric Relationships of Ship Components

Author:

Ma Shengqin123ORCID,Wang Wenzhi12,Pan Zongxu123ORCID,Hu Yuxin12,Zhou Guangyao12,Wang Qiantong12ORCID

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Ship recognition with optical remote sensing images is currently widely used in fishery management, ship traffic surveillance, and maritime warfare. However, it currently faces two major challenges: recognizing rotated targets and achieving fine-grained recognition. To address these challenges, this paper presents a new model called Related-YOLO. This model utilizes the mechanisms of relational attention to stress positional relationships between the components of a ship, extracting key features more accurately. Furthermore, it introduces a hierarchical clustering algorithm to implement adaptive anchor boxes. To tackle the issue of detecting multiple targets at different scales, a small target detection head is added. Additionally, the model employs deformable convolution to extract the features of targets with diverse shapes. To evaluate the performance of the proposed model, a new dataset named FGWC-18 is established, specifically designed for fine-grained warship recognition. Experimental results demonstrate the excellent performance of the model on this dataset and two other public datasets, namely FGSC-23 and FGSCR-42. In summary, our model offers a new route to solve the challenging issues of detecting rotating targets and fine-grained recognition with remote sensing images, which provides a reliable foundation for the application of remote sensing images in a wide range of fields.

Funder

Aerospace Information Research Institute, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3