Heating pipeline identification and leakage detection method based on improved R3Det

Author:

Chen Jiayan1,Li Zhiqian1,Tang Ping2,Kong Shuai2,Hu Jiansheng2,Wang Qiang1

Affiliation:

1. College of Quality and Safety Engineering, China Jiliang University, Xueyuan Street, Hangzhou 310018, Zhejiang, China

2. Key Laboratory of Special Equipment Safety Testing Technology of Zhejiang Province, Zhejiang Academy of Special Equipment Science, Hangzhou 310018, Zhejiang, China

Abstract

In response to the frequent occurrence of leakage accidents in heating pipelines, timely detection of leakage points in such pipelines is of great significance to ensure the safe operation of heating systems. This article proposes a method for detecting leakage points in heating pipelines using drones equipped with infrared thermal imagers, employing a combination of the improved R3Det algorithm and the adaptive threshold method. Firstly, the algorithm identifies the area of the heating pipeline and then employs the adaptive threshold method to detect the presence of leakage points in the identified pipeline area. Additionally, taking into account the morphological characteristics of heating pipelines, the R3Det network is enhanced by introducing variable convolution, enabling more precise extraction of pipeline features. To reduce model overfitting and enhance network expression capabilities, the H-swish activation function is employed to replace the original activation function. Furthermore, candidate anchor boxes are clustered using the K-means++ clustering algorithm to obtain better position regression results and improve training efficiency. The improved algorithm demonstrates significantly better positioning precision compared to the original network. Moreover, an adaptive threshold algorithm is proposed for leak detection and labelling, utilising the original temperature information contained in infrared images. The experimental results demonstrate that this method achieves higher accuracy in detecting leaks in heating pipelines.

Publisher

British Institute of Non-Destructive Testing (BINDT)

Subject

Materials Chemistry,Metals and Alloys,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3