A Comparative Modeling Study of Supertyphoons Mangkhut and Yutu (2018) Past the Philippines with Ocean-Coupled HWRF

Author:

Nguyen Thi-Chinh,Huang Ching-Yuang

Abstract

The ocean-coupled Hurricane Weather Research and Forecasting (HWRF) system was used to investigate the evolution of Supertyphoons Mangkhut and Yutu (2018) over the Philippines Sea and near landfall in the northern Philippines. The simulation results indicate that Mangkhut at a deepening stage has a smaller track sensitivity to the use of different physics schemes but greater intensity sensitivity, which becomes reversed for Yutu at a weakening stage. When both upstream tracks are well simulated with some specific suite of physics schemes, sensitivity experiments indicate that both track deviations near the northern Philippines are only weakly modified by the air–sea interaction (ocean-coupled or uncoupled processes), the topographic effects of the Philippines terrain (retained or not), and the initial ocean temperature change along both typhoon tracks. The interactions between the internal typhoon vortex and the large-scale flow play an important role in the overall movement of both typhoons, which were explored for their structural and convective evolutions near the terrain. The wavenumber-one potential vorticity (PV) tendency budget of the typhoon vortex was analyzed to explain the induced typhoon translation from different physical processes. The west-northwestward translation for the stronger Mangkhut near the northern Philippines is primarily induced by both horizontal and vertical PV advection but with the latter further enhanced to dominate the northward deflection when closing in to the terrain. However, the northwestward translation and track deflection near landfall for the weaker Yutu are driven by the dominant horizontal PV advection. Differential diabatic heating is relatively less important for affecting the movement of both typhoons near landfall.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3