The Influence of Island Topography on Typhoon Track Deflection

Author:

Huang Yi-Hsuan1,Wu Chun-Chieh1,Wang Yuqing2

Affiliation:

1. Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

2. International Pacific Research Center, and Department of Meteorology, University of Hawaii at Manoa, Honolulu, Hawaii

Abstract

Abstract High-resolution simulations for Typhoon Krosa (2007) and a set of idealized experiments are conducted using a full-physics model to investigate the eminent deflection of typhoon track prior to its landfall over mountainous island topography. The terrain height of Taiwan plays the most important role in Typhoon Krosa’s looping motion at its landfall, while the surface properties, details in the topographic shape of Taiwan, and the cloud microphysics are shown to be secondary to the track deflection. A simulation with 3-km resolution and realistic model settings reproduces the observed Krosa’s track, while that with 9-km resolution fails, suggesting that high resolution to better resolve the typhoon–terrain interactions is important for the prediction and simulation of typhoon track deflection prior to landfall. Results from idealized experiments with model configurations mimicking those of Supertyphoon Krosa show that vortices approaching the northern and central topography are significantly deflected to the south before making sharp turns to the north, forming a kinked track pattern prior to and during landfall. This storm movement is consistent with the observed looping cases in Taiwan. Both real-case and idealized simulations show strong channel winds enhanced between the storm and the terrain when deflection occurs. Backward trajectory analyses support the concept of the channeling effect, which has been previously found to be crucial to the looping motion of Typhoon Haitang (2005) as well. However, the inner-core asymmetric ventilation flow does not match the movement of a deflected typhoon perfectly, partly because the steering flow is not well defined and could not completely capture the terrain-induced deflection in the simulation and in nature.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference28 articles.

1. A numerical study of the effect of island terrain on tropical cyclones;Bender;Mon. Wea. Rev.,1987

2. Modeling the nocturnal boundary layer;Blackadar,1976

3. High resolution models of the planetary boundary layer;Blackadar,1979

4. Changes in the characteristics of typhoons crossing the island of Taiwan;Brand;Mon. Wea. Rev.,1974

5. Tropical cyclone movement and surrounding flow relationship;Chan;Mon. Wea. Rev.,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3