Exploring the Evolution of Typhoon Lekima (2019) Moving Offshore Northeast of Taiwan with a Multi-Resolution Global Model

Author:

Huang Ching-Yuang,Chang Chau-Hsiang,Kuo Hung-Chi

Abstract

Typhoon Lekima occurred in early August 2019 and moved northwestward toward Taiwan. During offshore passage, the typhoon underwent rapid intensification, with a northward deflected track, moving closer to northeastern Taiwan. A global model, MPAS, at a multi-resolution of 60-15-3 km, is utilized with ensemble forecasts to investigate the dynamic processes causing the track deflection and intensity change as well as identify the track uncertainty to initial perturbed conditions under the topographic effects of the Central Mountain Range (CMR). For spinning up the typhoon vortex in ensemble forecasts, dynamic vortex initialization has been enforced with a 3 km resolution targeted at the Taiwan area. As one specific member track is similar to the best track, the track deflection is significantly reduced in the absence of the Taiwan terrain, highlighting the role of the topographic effects of the CMR. For these tracks with similar deflection, the northward deflection is caused by the induced strong flow to the east of the typhoon center in response to the re-circulating flow around southern Taiwan, which produces the wavenumber-one gyre in the asymmetric flow difference to drive the vortex northward. The typhoon translation around the Taiwan terrain is dominated by the changing wavenumber-one horizontal potential vorticity (PV) advection during the track deflection in the ensemble forecasts. The formation of an intense PV tongue along the upper eyewall is a facilitation precondition of RI, while RI can be significantly enhanced in the presence of an intense lower-stratospheric PV core near the upper eye, which is produced by the radial inflow of the developed transverse vortex circulation over the upper-level outflow layer.

Funder

The Ministry of Science and Technology

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3