Sensitivity of the Track and Intensity Forecasts of Typhoon Megi (2010) to Satellite-Derived Atmospheric Motion Vectors with the Ensemble Kalman Filter

Author:

Kieu Chanh Q.1,Truong Nguyen Minh1,Mai Hoang Thi1,Ngo-Duc Thanh2

Affiliation:

1. Laboratory for Weather and Climate Forecasting, Hanoi College of Science, Vietnam National University, Hanoi, Vietnam

2. Department of Meteorology, Hanoi College of Science, Vietnam National University, Hanoi, Vietnam

Abstract

Abstract In this study, sensitivities of the track and intensity forecasts of Typhoon Megi (2010) to the Cooperative Institute for Meteorological Satellite Studies (CIMSS) University of Wisconsin satellite atmospheric motion vector (AMV) dataset are examined. Assimilation of the CIMSS AMV dataset using the local ensemble transform Kalman filter implemented in the Weather Research and Forecasting model shows that the AMV data can significantly improve the track forecast of Typhoon Megi, especially the sharp turn from west-northwest to north after crossing the Philippines. By broadening the western Pacific subtropical high to the west, the AMV data can help reduce the eastward bias of the track, thus steering the storm away inimical shear environment and facilitating its subsequent development. Further sensitivity experiments with separated assimilation of the low- to midlevel (800–300 hPa) and upper-level (300–100 hPa) AMV winds reveal that, despite the sparse distribution of the low-level AMV winds with most of the data points located in the periphery of Megi’s main circulation, the track forecasts tend to be more sensitive to the low-level than to the upper-level wind observations. This indicates that the far-field low-level observations can improve the large-scale environmental flow that storms are to move in, giving rise to a better representation of the steering flow and subsequent intensity change. While much of the recent effort in tropical cyclone research focuses on inner-core observations to improve the intensity forecast, the results in this study show that the peripheral observations outside the storm center could contribute considerably to the intensity and track forecasts and deserve attention for better typhoon forecast skills.

Publisher

American Meteorological Society

Subject

Atmospheric Science,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3