Impact of Enhanced Satellite-Derived Atmospheric Motion Vector Observations on Numerical Tropical Cyclone Track Forecasts in the Western North Pacific during TPARC/TCS-08

Author:

Berger Howard,Langland Rolf,Velden Christopher S.,Reynolds Carolyn A.,Pauley Patricia M.

Abstract

AbstractEnhanced atmospheric motion vectors (AMVs) produced from the geostationary Multifunctional Transport Satellite (MTSAT) are assimilated into the U.S. Navy Operational Global Atmospheric Prediction System (NOGAPS) to evaluate the impact of these observations on tropical cyclone track forecasts during the simultaneous western North Pacific Ocean Observing System Research and Predictability Experiment (THORPEX) Pacific Asian Regional Campaign (TPARC) and the Tropical Cyclone Structure—2008 (TCS-08) field experiments. Four-dimensional data assimilation is employed to take advantage of experimental high-resolution (space and time) AMVs produced for the field campaigns by the Cooperative Institute for Meteorological Satellite Studies. Two enhanced AMV datasets are considered: 1) extended periods produced at hourly intervals over a large western North Pacific domain using routinely available MTSAT imagery and 2) limited periods over a smaller storm-centered domain produced using special MTSAT rapid-scan imagery. Most of the locally impacted forecast cases involve Typhoons Sinlaku and Hagupit, although other storms are also examined. On average, the continuous assimilation of the hourly AMVs reduces the NOGAPS tropical cyclone track forecast errors—in particular, for forecasts longer than 72 h. It is shown that the AMVs can improve the environmental flow analyses that may be influencing the tropical cyclone tracks. Adding rapid-scan AMV observations further reduces the NOGAPS forecast errors. In addition to their benefit in traditional data assimilation, the enhanced AMVs show promise as a potential resource for advanced objective data-targeting methods.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3