Author:
Kato Shigeru,Wada Naoki,Ito Ryuji,Shiozaki Takaya,Nishiyama Yudai,Kagawa Tomomichi
Abstract
Texture evaluation is manually performed in general, and such analytical tasks can get cumbersome. In this regard, a neural network model is employed in this study. This paper describes a system that can estimate the food texture of snacks. The system comprises a simple equipment unit and an artificial neural network model. The equipment simultaneously examines the load and sound when a snack is pressed. The neural network model analyzes the load change and sound signals and then outputs a numerical value within the range (0,1) to express the level of textures such as “crunchiness” and “crispness”. Experimental results validate the model’s capacity to output moderate texture values of the snacks. In addition, we applied the convolutional neural network (CNN) model to classify snacks and the capability of the CNN model for texture estimation is discussed.
Subject
Computer Networks and Communications
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献