Broken Bar Fault Detection Using Taylor–Fourier Filters and Statistical Analysis

Author:

Aguayo-Tapia Sarahi,Avalos-Almazan Gerardo,Rangel-Magdaleno Jose de JesusORCID,Paternina Mario R. A.

Abstract

Broken rotor bars in induction motors make up one of the typical fault types that are challenging to detect. This type of damage can provoke adverse effects on the motors, such as mechanical and electrical stresses, together with an increase in electricity consumption, causing higher operative costs and losses related to the maintenance times or even the motor replacement if the damage has led to a complete failure. To prevent such situations, diverse signal processing algorithms have been applied to incipient fault detection, using different variables to analyze, such as vibrations, current, or flux. To counteract the broken rotor bar damage, this paper focuses on a motor current signal analysis for early broken bar detection and classification by using the digital Taylor–Fourier transform (DTFT), whose implementation allows fine filtering and amplitude estimation with the final purpose of achieving an incipient fault detection. The detection is based on an analysis of variance followed by a Tukey test of the estimated amplitude. The proposed methodology is implemented in Matlab using the O-splines of the DTFT to reduce the computational load compared with other methods. The analysis is focused on groups of 50-test of current signals corresponding to different damage levels for a motor operating at 50% and 75% of its full load.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3