Review on Machine Learning Algorithm Based Fault Detection in Induction Motors
Author:
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications
Link
https://link.springer.com/content/pdf/10.1007/s11831-020-09446-w.pdf
Reference110 articles.
1. Acosta G, Verucchi C, Gelso E (2006) A current monitoring system for diagnosing electrical failures in induction motors. Mech Syst Signal Process 20(4):953–965
2. Banerjee TP, Das S, Roychoudhury J, Abraham A (2010) Implementation of a new hybrid methodology for fault signal classification using short-time fourier transform and support vector machines. In: Soft computing models in industrial and environmental applications, 5th international workshop (SOCO 2010), Springer, pp 219–225
3. Baraldi P, Podofillini L, Mkrtchyan L, Zio E, Dang VN (2015) Comparing the treatment of uncertainty in Bayesian networks and fuzzy expert systems used for a human reliability analysis application. Reliab Eng Syst Saf 138:176–193
4. Benbouzid MEH (2000) A review of induction motors signature analysis as a medium for faults detection. IEEE Trans Ind Electron 47(5):984–993
5. Bengio Y et al (2009) Learning deep architectures for AI. Found Trends® Mach Learn 2(1):1–127
Cited by 108 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Electromagnetic torque modeling and validation for a permanent magnet spherical motor based on XGBoost;Simulation Modelling Practice and Theory;2024-11
2. Autonomous data-driven delamination detection in laminated composites with limited and imbalanced data;Alexandria Engineering Journal;2024-11
3. Application of deep neural networks for automatic rub detection in aero-derivative gas turbines;Advanced Engineering Informatics;2024-10
4. Real-time AIoT anomaly detection for industrial diesel generator based an efficient deep learning CNN-LSTM in industry 4.0;Internet of Things;2024-10
5. Rulman Titreşim Verilerinden Derin Öğrenme Tabanlı Arıza Tespiti;Karadeniz Fen Bilimleri Dergisi;2024-09-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3