A CNN-Based Methodology for Identifying Mechanical Faults in Induction Motors Using Thermography

Author:

Trejo-Chavez Omar1ORCID,Cruz-Albarran Irving A.2ORCID,Resendiz-Ochoa Emmanuel2,Salinas-Aguilar Alejandro3,Morales-Hernandez Luis A.1ORCID,Basurto-Hurtado Jesus A.34,Perez-Ramirez Carlos A.34ORCID

Affiliation:

1. C. A. Mecatrónica, Faculty of Engineering, Autonomus University of Queretaro, Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico

2. G. C. Sistemas de Inteligencia Artificial Aplicados a Modelos Biomédicos y Mecánicos, Faculty of Engineering, Autonomus University of Queretaro, Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Mexico

3. Tequexquite: Centro de Investigación y Desarrollo Tecnológico para la Accesibilidad e Innovación Social, Faculty of Engineering, Autonomus University of Queretaro, Campus Tequisquiapan, Carretera San Juan del Río-Xilitla, Km 19+500, Tequisquiapan 76750, Mexico

4. G. C. Sistemas de Inteligencia Artificial Aplicados a Modelos Biomédicos y Mecánicos, Faculty of Engineering, Autonomus University of Queretaro, Campus Aeropuerto, Carretera a Chichimequillas S/N, Ejido Bolaños, Santiago de Querétaro 76140, Mexico

Abstract

Infrared thermography (IRT) has become an interesting alternative for performing condition assessments of different types of induction motor (IM)-based equipment when it operates under harsh conditions. The reported results from state-of-the-art articles that have analyzed thermal images do not consider (1): the presence of more than one fault, and (2) the inevitable noise-corruption the images suffer. Bearing in mind these reasons, this paper presents a convolutional neural network (CNN)-based methodology that is specifically designed to deal with noise-corrupted images for detecting the failures that have the highest incidence rate: bearing and broken bar failures; moreover, rotor misalignment failure is also considered, as it can cause a further increase in electricity consumption. The presented results show that the proposal is effective in detecting healthy and failure states, as well as identifying the failure nature, as a 95% accuracy is achieved. These results allow considering the proposal as an interesting alternative for using IRT images obtained in hostile environments.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3