Failure Mode and Effects Analysis on the Air System of an Aero Turbofan Engine Using the Gaussian Model and Evidence Theory

Author:

Tang Yongchuan1ORCID,Zhou Yonghao2,Zhou Ying23,Huang Yubo4,Zhou Deyun13

Affiliation:

1. School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China

2. School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China

3. School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710072, China

4. School of Engineering, University of Warwick, Coventry CV4 7AL, UK

Abstract

Failure mode and effects analysis (FMEA) is a proactive risk management approach. Risk management under uncertainty with the FMEA method has attracted a lot of attention. The Dempster–Shafer (D-S) evidence theory is a popular approximate reasoning theory for addressing uncertain information and it can be adopted in FMEA for uncertain information processing because of its flexibility and superiority in coping with uncertain and subjective assessments. The assessments coming from FMEA experts may include highly conflicting evidence for information fusion in the framework of D-S evidence theory. Therefore, in this paper, we propose an improved FMEA method based on the Gaussian model and D-S evidence theory to handle the subjective assessments of FMEA experts and apply it to deal with FMEA in the air system of an aero turbofan engine. First, we define three kinds of generalized scaling by Gaussian distribution characteristics to deal with potential highly conflicting evidence in the assessments. Then, we fuse expert assessments with the Dempster combination rule. Finally, we obtain the risk priority number to rank the risk level of the FMEA items. The experimental results show that the method is effective and reasonable in dealing with risk analysis in the air system of an aero turbofan engine.

Funder

Natural Science Basic Research Program of Shaanxi

NWPU Research Fund for Young Scholars

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3