Modal Identification of Ultralow-Frequency Flexible Structures Based on Digital Image Correlation Method

Author:

Qian HuiORCID,Wu Yimeng,Zhu RuiORCID,Zhang Dahai,Jiang DongORCID

Abstract

Traditional modal testing has difficulty accurately identifying the ultralow-frequency modes of flexible structures. Ultralow-frequency excitation and vibration signal acquisition are two main obstacles. Aiming at ultralow-frequency modal identification of flexible structures, a modal testing method based on Digital Image Correlation method and Eigensystem Realization Algorithm is proposed. Considering impulse and shaker excitation are difficult to make generate ultralow-frequency vibration of structures, the initial displacement is applied to the structure for excitation. The ultralow-frequency accelerometer always has a large mass, which will change the dynamics performance of the flexible structure, so a structural vibration response was obtained through the Digital Image Correlation method. After collecting the free-decay vibration signal, the ultralow-frequency mode of the structure was identified by using the Eigensystem Realization Algorithm. Ground modal tests were conducted to verify the proposed method. Firstly, a solar wing structure was adopted, from which it was concluded that the signal acquisition using Digital Image Correlation method had high feasibility and accuracy. Secondly, an ultralow-frequency flexible cantilever beam structure which had the theoretical solution was employed to verify the proposed method and the theoretical fundamental frequency of the structure was 0.185 Hz. Results show that the Digital Image Correlation method can effectively measure the response signal of the ultralow-frequency flexible structure, and obtain the dynamics characteristics.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3