Affiliation:
1. Dipartimento di Ingegneria Industriale e dell’Informazione e di Economia, Università dell’Aquila Via G. Gronchi 18, L’Aquila (AQ), Italy
2. Dipartimento di Ingegneria Meccanica e Aerospaziale, Università di Roma La Sapienza Via Eudossiana 18, Rome, Italy
Abstract
Flexible structural components can be attached to the rest of the structure using different types of joints. For instance, this is the case of solar panels or array antennas for space applications that are joined to the body of the satellite. To predict the dynamic behaviour of such structures under different boundary conditions, such as additional constraints or appended structures, it is possible to start from the frequency response functions in free-free conditions. In this situation, any structure exhibits rigid body modes at zero frequency. To experimentally simulate free-free boundary conditions, flexible supports such as soft springs are typically used: with such arrangement, rigid body modes occur at low non-zero frequencies. Since a flexible structure exhibits the first flexible modes at very low frequencies, rigid body modes and flexible modes become coupled: therefore, experimental frequency response function measurements provide incorrect information about the low frequency dynamics of the free-free structure. To overcome this problem, substructure decoupling can be used, that allows us to identify the dynamics of a substructure (i.e. the free-free structure) after measuring the frequency response functions on the complete structure (i.e. the structure plus the supports) and from a dynamic model of the residual substructure (i.e. the supporting structure). Subsequently, the effect of additional boundary conditions can be predicted using a frequency response function condensation technique. The procedure is tested on a reduced scale model of a space solar panel.
Subject
Mechanics of Materials,General Materials Science,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献