Modal Variability of Ginkgo Seed–Stem System Based on Model Updating

Author:

Zhou Jie123,Xu Linyun2,Zhou Hongping2ORCID,Zhang Rongshan3,Jia Zhicheng2,Zhang Fubao1,Zhang Yue1ORCID,Chen Juan1,Zhang Cheng1

Affiliation:

1. School of Mechanical Engineering, Nantong University, Nantong 226019, China

2. School of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

3. Jiangsu Linhai Power Machinery Group Co., Ltd., Taizhou 225300, China

Abstract

An accurate simulation model is crucial for the analysis of the correct modal information of the ginkgo seed–stem system (ginkgo subsystem). This underpins the provision of technical rationale for efficient and low-damage precision vibrational harvesting operations in ginkgo cultivation. In this study, based on the modal parameters of the ginkgo subsystem, a finite element model updating method is proposed to correct the elastic modulus of the stem with the natural frequency of the first bending mode. The large difference in the modal results calculated before and after model updating reveals that model updating is a critical step in the finite element analysis of crop subsystems. Then, an uncertainty parameter modeling method is proposed to investigate the modal variability of the ginkgo subsystem by finite element analysis. The results show that the stem length is a key parameter affecting the variability of natural frequencies, and the seed weight is a minor parameter. The variability of the ginkgo seed’s gravity center offset has a negligible effect on the natural frequencies of the system. The first natural frequency of the ginkgo subsystem can be utilized for vibrational harvesting. In addition, since the difference between the upper and lower limits of the first natural frequency of the ginkgo subsystem does not exceed 1 Hz, a specific excitation frequency can cause most ginkgo subsystems to resonate. This result facilitates the determination of precise excitation frequencies for efficient and low-damage ginkgo vibrational harvesting, ensuring both economic and ecological benefits in the management of ginkgo plantations.

Funder

Chinese National “Fourteen Five-Year” Science and Technology Support Program

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3