Enhanced Heterogeneous Graph Attention Network with a Novel Multilabel Focal Loss for Document-Level Relation Extraction

Author:

Chen Yang1ORCID,Shi Bowen2

Affiliation:

1. State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China

2. School of Journalism, Communication University of China, Beijing 100024, China

Abstract

Recent years have seen a rise in interest in document-level relation extraction, which is defined as extracting all relations between entities in multiple sentences of a document. Typically, there are multiple mentions corresponding to a single entity in this context. Previous research predominantly employed a holistic representation for each entity to predict relations, but this approach often overlooks valuable information contained in fine-grained entity mentions. We contend that relation prediction and inference should be grounded in specific entity mentions rather than abstract entity concepts. To address this, our paper proposes a two-stage mention-level framework based on an enhanced heterogeneous graph attention network for document-level relation extraction. Our framework employs two different strategies to model intra-sentential and inter-sentential relations between fine-grained entity mentions, yielding local mention representations for intra-sentential relation prediction and global mention representations for inter-sentential relation prediction. For inter-sentential relation prediction and inference, we propose an enhanced heterogeneous graph attention network to better model the long-distance semantic relationships and design an entity-coreference path-based inference strategy to conduct relation inference. Moreover, we introduce a novel cross-entropy-based multilabel focal loss function to address the class imbalance problem and multilabel prediction simultaneously. Comprehensive experiments have been conducted to verify the effectiveness of our framework. Experimental results show that our approach significantly outperforms the existing methods.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3