Multi-Task Learning and Improved TextRank for Knowledge Graph Completion

Author:

Tian Hao,Zhang Xiaoxiong,Wang Yuhan,Zeng Daojian

Abstract

Knowledge graph completion is an important technology for supplementing knowledge graphs and improving data quality. However, the existing knowledge graph completion methods ignore the features of triple relations, and the introduced entity description texts are long and redundant. To address these problems, this study proposes a multi-task learning and improved TextRank for knowledge graph completion (MIT-KGC) model. The key contexts are first extracted from redundant entity descriptions using the improved TextRank algorithm. Then, a lite bidirectional encoder representations from transformers (ALBERT) is used as the text encoder to reduce the parameters of the model. Subsequently, the multi-task learning method is utilized to fine-tune the model by effectively integrating the entity and relation features. Based on the datasets of WN18RR, FB15k-237, and DBpedia50k, experiments were conducted with the proposed model and the results showed that, compared with traditional methods, the mean rank (MR), top 10 hit ratio (Hit@10), and top three hit ratio (Hit@3) were enhanced by 38, 1.3%, and 1.9%, respectively, on WN18RR. Additionally, the MR and Hit@10 were increased by 23 and 0.7%, respectively, on FB15k-237. The model also improved the Hit@3 and the top one hit ratio (Hit@1) by 3.1% and 1.5% on the dataset DBpedia50k, respectively, verifying the validity of the model.

Funder

the NSFC under grant

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference43 articles.

1. WordNet

2. Freebase: A collaboratively created graph database for structuring human knowledge;Bollacker;Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data,2008

3. Multi-task deep neural networks for natural language understanding;Liu;Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,2019

4. TextRank: Bringing Order into Texts;Mihalcea;Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing,2004

5. Albert: A lite bert for self-supervised learning of language representations;Lan;arXiv,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3